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Abstract This study examines the decoding times at which
the brain processes structural information in music and com-
pares them to timescales implicated in recent work on speech.
Combining an experimental paradigm based on Ghitza and
Greenberg (Phonetica, 66(1-2), 113–126, 2009) for speech
with the approach of Farbood et al. (Journal of Experimental
Psychology: Human Perception and Performance, 39(4),
911–918, 2013) for musical key-finding, listeners were asked
to judge the key of short melodic sequences that were pre-
sented at a highly a compressed rate with varying durations of
silence inserted in a periodic manner in the audio signal. The
distorted audio signals comprised signal-silence alternations
showing error rate curves that identify peak performance
centered around an event rate of 5–7 Hz (143–200 ms
interonset interval; 300–420 beats/min), where event rate is
defined as the average rate of pitch change. The data support

the hypothesis that the perceptual analysis of music entails the
processes of parsing the signal into chunks of the appropriate
temporal granularity and decoding the signal for recognition.
The music-speech comparison points to similarities in how
auditory processing builds on the specific temporal structure
of the input, and how that structure interacts with the internal
temporal dynamics of the neural mechanisms underpinning
perception.

Keywords Key finding . Tonal induction . Neuronal
oscillations . Music structure . Brain rhythms . Speech
rate

Traditionally, most approaches to the perceptual analysis of
speech have focused on the rich frequency structure of the
signal within a short time window. Speech perception has
been––appropriately––characterized as a demanding spectral
analysis challenge, and considerable progress has been made
investigating the mechanisms underlying short-term frequen-
cy analysis (Gold, Morgan, & Ellis, 2011; Stevens, 1998,
2005). Prior work has examined how the temporal structure
of speech signals underpins perception in concert with the
spectral information (see Rosen, 1992 for review; Drullman,
Festen, & Plomp, 1994; Houtgast & Steeneken, 1985;
Shannon, Zeng, Kamath, Wygonski, & Ekelid, 1995). One
of the emerging generalizations from this line of research is
that there appears to be a fortuitous alignment between robust
temporal properties of speech, e.g., the envelope fluctuations
characteristic of the flow of syllabic information, and the brain
rhythms argued to play a role in perception and cognition
(Ghitza, 2011; Giraud & Poeppel, 2012; Poeppel 2003).
Although the precise mechanisms remain under vigorous
debate, there is consensus that both structure in time and
processing rate itself merit deeper investigation.
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In the theoretical and experimental study of music, there is
a long and productive tradition of studying temporal structure
and tempo (see London, 2012 for review). However, those
approaches have not intersected in principled ways with relat-
ed speech perception research. Here we capitalize on recent
progress in both domains, combining novel approaches to
temporal constraints on speech decoding (Ghitza, 2011,
2012; Ghitza & Greenberg, 2009) with results on music
perception, and in particular the analysis of key (Farbood,
Marcus, & Poeppel, 2013).

The current study builds on an experimental design by
Ghitza and Greenberg (2009) that explored the possible role
of brain rhythms in speech perception. They inserted period-
ically spaced silences into semantically unpredictable
sentences that were compressed by a factor of three, and
measured the error rate in word identification. Without
inserted silent gaps, the error rate for word identification in
compressed speech was > 50 %. However, when silence
intervals of varying durations (up to 160 ms) were added in
between 40-ms segments of audio signal, performance im-
proved, resulting in a U-shaped error-rate curve with a pre-
ferred packaging rate of around 6–17 Hz (59–167 ms IOI).
Packaging rate is a term Ghitza (2011) uses to describe the
periodic silence-plus-audio-segment rate of compressed stim-
uli distorted by silence insertions. For example, stimuli with
audio segments of 40 ms and silence intervals of 80 ms would
have a 120-ms packaging rate (8.33 Hz). Ghitza and
Greenberg (2009) interpreted the decrease in error rate
resulting from the insertions of silence as the result of adding
necessary decoding time. Based on these results, they sug-
gested an oscillatory mechanism on a specific timescale for
auditory processing and developed a phenomenological mod-
el to account for these counterintuitive data (Ghitza, 2011).

The association between temporal properties of speech (e.g.,
mean syllable duration, phoneme duration, etc.) and neuronal
oscillations was made explicit by Poeppel (2003), and has
subsequently been investigated empirically and computational-
ly in a number of psychophysical and neurophysiological stud-
ies (for review, see Giraud & Poeppel, 2012). An important
computational angle was introduced by Ghitza (2011, 2013) in
the context of formulating a model designed to address how
speech signals are parsed into coarser, typically syllable-long
speech fragments, and then decoded. It has now been demon-
strated convincingly (Ghitza, 2012) that lower-frequency, theta
oscillations are implicated in connected speech parsing; current
research is addressing the role of higher frequency beta and
gamma oscillations for decoding. Musical stimuli such as those
in the current study have not been used in this theoretical
context, but such materials can help shed light on the mecha-
nistic role that neuronal oscillations might play in perception.

In a study exploring the psychophysics of structural key-
finding by Farbood et al. (2013), the influence of rate variation
in music was examined by asking musically trained listeners

to judge whether melodic sequences presented at different
tempi ended on a resolved or unresolved pitch. The tempi of
the sequences were parametrically varied over note event rates
of 0.12–56.7 Hz/18–8333 ms interonset interval (IOI)/7–
3400 beats/ min (BPM), in which the duration of each note
was considered a beat. Error rates on the task resulted in a U-
shaped curve where the lowest rates ranged between 30–
400 BPM (0.5–6.7 Hz/150–2000 ms IOI). The upper end of
the curve overlapped with the range for optimal speech intel-
ligibility and almost precisely aligned with the range in which
beat induction and melody recognition occur.

However, a critical unresolved question remained: al-
though it appeared from the results of Farbood et al. (2013)
that key-finding is essentially limited by rhythmic and
melodic constraints, the actual decoding time for tonal
processing, predicated on apprehending musical structure,
was still unknown. The study by Farbood et al. (2013) is the
musical equivalent of studies that assess intelligibility of com-
pressed speech at different rates (Dupoux & Green, 1997;
Foulke & Sticht, 1969; Peelle & Wingfield 2005; Versfeld &
Dreschler, 2002). The current study goes a step further and is
the musical analog of Ghitza and Greenberg’s (2009) study;
the tempo/compression rate is not simply increased or de-
creased––by adding silences in a way that does not align with
the natural rhythm of the sequence, we are attempting to see
whether musical comprehension (in the form of key-finding)
is optimized when provided with additional decoding time.

Aminimum decoding time for music has been hinted at in a
study with a very different task and stimuli by Bigand, Poulin,
Tillmann, Madurell, and D’Adamo (2003), which compared
sensory versus cognitive components in harmonic priming.
The stimuli for that study consisted of eight-chord sequences
in which the first seven chords served as a context for a final
target chord (paralleling the eight-note structure of the melo-
dies here). They found that at 300 and 150 ms per chord, the
tonal context clearly facilitated processing of the target, indi-
cating that key-finding had successfully occurred despite the
fast tempi. However, when the tempo was further increased to
75 ms per chord (13.3 Hz; 800 BPM), the effect of tonal
context appeared to be overruled by sensory priming. This
suggests there is a minimum amount of processing time that is
necessary for key induction.

Here we address explicitly whether the perception of mu-
sical structure is subject to similar “parsing and decoding”
principles hypothesized for speech, and test whether the U-
shaped error rate curve found for speech appears also for
music. We applied the gap-insertion paradigm to time-
compressed melodic sequences and asked subjects to identify
the key of the melody. Potential parallels would suggest
shared mechanisms between these two domains (Patel,
2003), and the study of potential oscillatory mechanisms
may open up new avenues of research into basic psychoacous-
tic processing of music.
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Method

Participants

Twenty-eight musically trained listeners participated (average
age 23.64 years, SD = 5.73, 25 male). Formal training on a
primary instrument averaged 9.63 years (SD = 4.84). On a
scale of 0 to 5 (where 0 was no musical experience and 5 was
professional-level musical experience), subjects’ mean self-
rating was 3.77 (SD = 0.75). Average number of years of
college-level music theory was 2.07 (SD = 1.65).

Stimulus materials

The stimuli were based on ten melodic sequences composed
by Farbood et al. (2013; Fig. 1a). These melodic sequences
had identical pitch content––the union of all pitches in two
closely related keys differing by only one sharp or flat (e.g., C

major/G major)––and ended on the same pitch, one that could
be interpreted as either the tonic of or dominant of one of the
two keys in question. Since the pitch sets were identical
regardless of the implied key of that final note, the interpreta-
tion of that note was subject to the strong structural cues
provided by the ordering of the pitches that preceded it.
These structural cues included melodic intervals, the ordering
of those intervals, and longer patterns of notes, delineated by
contour changes, expected in typical harmonic progressions.
The rationale behind using these materials as an analog to
speech processing was the idea that structural cues emerge
from the intervallic relationships between the pitches and are
critical to key-finding, much like diphones in speech combine
to form syllables that lead to identification of words.

Given these melodic sequences, Ghitza and Greenberg’s
(2009) stimulus modificationmethod for speechmaterials was
then adopted. The melodies were first rendered at 1 Hz
(1000 ms IOI; 60 BPM), a tempo at which key identification
was highly consistent based on the results of Farbood et al.
(2013), and then time-compressed by a factor of 28, a tempo at
which key identification was impossible (28 Hz; 35.7 ms IOI;
1680 BPM). These compressed sequences were then altered
by inserting varying durations of silence (“gaps”) periodical-
ly in the audio. The unsegmented original and compressed
stimuli were generated inMIDI format at the original pitch (as
shown in Fig. 1a) and at 22 transpositions (11 semitones up
and 11 semitones down). These MIDI files were then convert-
ed to audio (WAV format) using QuickTime (grand piano
timbre). The resulting audio files were segmented into con-
secutive audio chunks of equal duration, interspersed with
gaps (Fig. 1b); the final format of the stimuli was rendered
in 16 kHz 16-bit mono.

The durations of the audio segments (10, 23, 38, 55, and
65 ms) and the silence intervals (0, 40, 80, 160, 230, 640, and
1280 ms) were varied parametrically. The stimuli had a total
number of audio segments that ranged from five (for 65 ms
segments) to 29 (for 10 ms segments). The mean number of
pitch fragments per segment ranged from 1.24 to 2.40.
Table S1 in the Supplemental Materials provides additional
information about the number of audio segments per stimulus,
number of note fragments per segment, and the longest total
stimulus duration for each segment length.

Procedure

Participants were seated in front of a computer and presented
diotically with stimuli at a comfortable listening level over
Sennheiser HD 650 headphones in a hemi-anechoic chamber.
Subjects indicated whether each sequence sounded resolved
(ending on an implied tonic) or unresolved (ending on an
implied dominant) by entering responses into a MATLAB
GUI that used Psychtoolbox extensions for audio playback
(Brainard, 1997; Kleiner, Brainard, & Pelli, 2007; Pelli,

(a)

(b)

Fig. 1 (a) The original melodic sequences. Sequences 1–5 are designed
to sound like C major and sequences 6–10 are designed to sound like G
major (before transposition). (b) Illustration of how the stimuli were
created (not to scale). Top: The original melodic sequence at the
original tempo. Center: The melody generated at the compressed
tempo. Bottom: Compressed melody with silences inserted
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1997). Participants listened to 340 sequences: twice for each
of the 10 sequences at both the uncompressed rate of 1 Hz
without gaps and the compressed rate of 28 Hz also without
gaps, and once for the 10 sequences altered at all combina-
tions of audio segment and silence durations (5 audio segment
durations × 6 silence durations × 10 melodic sequences).
Stimuli were presented in a pseudo-randomized order that
took into account tempo, key, and original sequence, such that
no stimulus was preceded by another stimulus generated from
the same original sequence or of the same type (uncom-
pressed, compressed without gaps, or compressed with gaps),
and no stimulus was in the same key as the two preceding
sequences. The transposition of each stimulus was determined
based on two constraints: each sequence was transposed to
least three sharps/flats away from the key of the immediately
preceding trial, and transpositions alternated between upward
and downward directions (i.e., above and below the pitches of
the pre-transposed sequences). The experiment took approxi-
mately one hour to complete without breaks.

Results

We determined correct responses by looking at the each
subject’s judgments on the original, unmodified melodic se-
quences played at the original tempo. With the exception of
Sequence 1, the judgments of key for these unmodified se-
quences were mostly in agreement with the expert labels from
Farbood et al. (2013). Sequences 2–10 had a disagreement
rate of 6.15 % when compared to expert judgments, while
Sequence 1 had a much higher error rate of 37.5 %, indicating
that this particular melody was considerably more ambiguous
than the others. Unlike the case for words in speech, there is
not necessarily a “correct” label for key. Although there can be
nearly universal agreement, depending on the musical mate-
rial in question, there commonly exists some degree of ambi-
guity. Thus we used each subject’s own judgments to deter-
mine whether a response should be deemed correct. If a
subject’s responses to the unmodified versions of a particular
sequence did not agree, all trials containing that sequence
were removed. If the two judgments for a sequence did agree,
then that judgment was interpreted as the correct response for
all trials containing that sequence. After exclusion for within-
subject disagreement, there remained 8,500 out of 9,520 total
trials across subjects out of which 7,500 featured stimuli with
gaps. This strategy resulted in a 0 % error rate for uncom-
pressed sequences and a 44.7 3 % error rate for compressed
sequences without gaps. A chi-square goodness-of-fit test
indicated that the error rate for the compressed sequences
without gaps was borderline chance, χ2(1, N = 500) = 3.80,
p = .051.

A two-way, repeated-measures analysis of variance
(ANOVA) with seven levels of silence durations (0, 40, 80,
160, 230, 640, 1280 ms) and five levels of audio segment
durations (10, 23, 38, 55, 65 ms) was performed on response
accuracy (percent correct for each subject); Greenhouse-
Geisser corrections were used in cases where sphericity was
violated. All effects were significant at the .05 level: F(5, 135)
= 2.90,MSE = 199.26, p = .016 for the main effect of silence
duration and F(2.66, 71.91) = 13.90,MSE = 351.65, p < .001
for the main effect of audio segment duration. There was also
a significant interaction between the two factors, F(10.48,
283.03) = 4.18,MSE = 206.76, p < .001, necessitating a closer
look at differences across levels for each factor.

Figure 2 shows mean error rates by audio segment duration
and silence duration. Table 1 shows the results of one-way,
repeated-measures ANOVAs (simple main effects) for each
silence and audio segment duration as well as post-hoc
Tukey-Kramer tests. As in the case of Ghitza and Greenberg
(2009), adding silences to compressed audio lowered error rate.
When the data were examined by individual audio segment
durations, a more complex picture emerged. The data revealed
a dissociation between audio segment durations shorter and
longer than the note event length. A U-shaped curve was found
for the higher audio segment durations, while accuracy for
shorter durations hovered at chance or even decreased in accu-
racy. This dissociation occurred at silence durations greater than
80 ms. At shorter silence intervals, all audio segment durations
were around the near-chance error levels found for the original
compressed condition without any inserted silences.

For the 10 ms audio segments, lack of adequate pitch
resolution was most likely a significant factor in performance
level. From a qualitative perspective, the 10 ms audio seg-
ments sounded increasingly “click-like” as the silence dura-
tions increased. There is a minimum of two to three cycles

Fig. 2 Mean error for all conditions graphed by audio segment duration.
Error bars indicate estimated standard error
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necessary for reliable pitch resolution of complex tones
(Metters & Williams, 1973; Patterson, Peters, & Milroy,
1983; Pollack, 1967)––approximately 20 ms for complex
tones with a fundamental frequency of 200 Hz (Ritsma &
Cardozo, 1963). Given this issue of reliable pitch resolution,
we added a preprocessing step in our subsequent analyses: we
removed trials in which there were less than three cycles of
audio for any pitches in a given sequence. This method
eliminated 766 trials out of 1,500 for the 10 ms case and none
for any of the longer audio segments.

Assuming there is a cyclical rate at which music processing
optimally occurs, we should see its signature––error rates
should indicate a minimum point at the optimal rate. To
further explore the preferential time window for music pro-
cessing, we examined task performance by event rate, the
musical analog of packaging rate for speech. Packaging rate
for speech as defined by Ghitza and Greenberg (2009) is the
periodic silence-plus-audio rate; event rate for music as de-
fined here is the mean rate of new musical information for
each stimulus. “New information” in the musical sense is
pitch, which is the atomic unit necessary for interpreting
musical structure and thus key. Event rate is similar to tempo,
although unlike tempo, the onsets are not precisely isochro-
nous (in the current context of artificially generated stimuli as
opposed to human-performed music). We use event rate as a
window into our data because the literal application of pack-
aging rate for music does not work; packaging rate as a
measure only makes sense when there is new information that
occurs with each packet. This is not the case for our stimuli
with 10 and 23 ms audio segments because a repeated pitch is
not new information. Figure 3 shows error rate plotted by
event rate. The results reveal that the error rate minimum
centered around 5–7 Hz for all audio segment durations.

In addition to the event rate, the preferred duty cycle of the
task was used to probe potential cyclical processing mecha-
nisms. Duty cycle is a general engineering term used to
describe the proportion of a cycle that a signal is active for
periodic phenomena. Ghitza and Greenberg (2009) used it to
denote the ratio of speech audio to silence. For example, no
silences inserted would mean a duty cycle of 100 %; a stim-
ulus with 100 ms of audio followed by 900 ms of silence
would have a duty cycle of 10 %. In examining duty cycle
values, we again excluded the 10 ms trials where insufficient
pitch resolution was a factor. What we found was a preferen-
tial range, based on error rates, that ranged from roughly 10 %
to 30% (Fig. 4). The results show that longer duty cycles (i.e.,
more audio information per unit time) does not translate into

Table 1 ANOVA results for simple main effects of audio segment and silence interval

Factor type Level type Factor duration (ms) F df p Levels with significant differences (ms)

Audio segment Silence interval 10 3.25 6, 540 .0029 {40, 80, 160} & 320

23 2.77 6, 540 .0098 None

38 8.01 6, 540 < .001 0 & {160, 320, 640, 1280};
{40, 80} & 320; 80 & 640

55 6.12 6, 540 < .001 0 & {320, 640, 1280}; 40 & {320, 640}

65 4.87 6, 540 < .001 0 & {160, 320, 640, 1280};
80 & {160, 320, 1280}

Silence interval Audio segment 40 0.71 2.93, 395.20 .52 None

80 1.07 4, 540 .26 None

160 3.62 4, 540 .0059 10 & {38, 65}

320 17.35 4, 540 < .001 10 & all; 23 & {38, 55}

640 11.50 4, 540 < .001 {10, 23} & {38, 55, 65}

1280 5.86 4, 540 < .001 {10, 23} & {38, 55, 65}

Note: Mean squared error (MSE) = 206.76 for all cases

Fig. 3 Mean error by event rate
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better performance, presumably because there is insufficient
decoding time available.

Discussion

The results of this study showed that the insertion of periodic
silences between segments of compressed music significantly
reduced error rate in a key-finding task. The data displayed a
distinctive U-shape function when viewed by event rate, sim-
ilar to results found for speech by Ghitza and Greenberg
(2009). Regardless of the size of audio segments and silence
intervals, the error rate minimum centered around 5–7 Hz
(~140–200 ms IOI; 300–420 BPM).

Similarities and differences between the current results and
Ghitza and Greenberg’s (2009) findings point to the way
auditory processing is tied to the specific temporal structure
of its input. The observed preferential duty cycle for music
processing from these results are 10–30 % as opposed to 33–
66 % for speech. The shorter duty cycle for music might
reflect the discrete-pitched nature of music; once the pitch of
a note has been resolved, no further contextual information is
required from the note. In contrast, syllabic envelopes are
continuously evolving. At higher levels (i.e., subsequent to
pitch detection), structures in music actually are processed at a
slower rate than speech.

In general, the rate of change inmusic encompasses a wider
range than in speech: the prominent range of the modulation
spectrum of speech across languages tends to be 4–8 Hz/125–
250 ms (e.g., Greenberg, 2006; Houtgast & Steeneken, 1985),
while for melodic sequences, the ideal range is ~0.5–6.7 Hz/
150–2000 ms (Farbood et al., 2013; Warren, Gardner,
Brubaker, & Bashford, 1991). These modulation rates may
be reflective of the natural periodicity in the neural system (cf.

Buzsáki, 2006). In the case of speech, there is a correspon-
dence between average durations of speech units and the
frequency ranges of cortical oscillations (Giraud & Poeppel,
2012; Ghitza, 2011). Phonetic features (20–80 ms), for exam-
ple, are associated with low gamma and beta oscillations (15–
50 Hz), while syllables and words (mean duration of 250 ms)
are associated with theta (4–8 Hz) oscillations. Likewise,
sequences of syllables and words embedded within a prosodic
phrase (500–2000 ms) correspond to delta oscillations (1–
3 Hz). While such results from EEG/MEG experiments are
increasingly common for speech, less work has been done
exploring the oscillatory nature of music processing. One such
study by Carrus, Koelsch, & Bhattacharya (2011) used a
frequency-based EEG approach and found that syntactic vio-
lations in chord sequences produced similar changes in delta-
theta power observed after processing of syntactic violations
in language. Furthermore, syntactic violations occurring at the
same time for both music and speech resulted in a pattern of
reduced frequency response in these bands, suggesting shared
neural resources.

Extensions of prior work on speech and music

Timescale manipulations of both speech and music without
added gaps result in U-shaped data patterns. Different mech-
anisms may explain the deterioration below the optimal range
(time expansion) or above it (time compression). For time
expansion, the limiting factor is likely the length of the work-
ing memory buffer (limit on integration); for time compres-
sion, it is the lack of decoding time and whatever other factors
limit resolution. Ghitza and Greenberg (2009) focused on the
time compression case in order to test the lack-of-decoding-
time hypothesis, and their data exhibited a U-shaped behavior
as well. Even though the results were U-shaped in both cases,
the mechanisms that underlie the data pattern for the uniform
timescale manipulation are distinct from those that underlie
the U-shape behavior for the repackaged data. Ghitza (2011)
argues that decoding time is governed by a cascade of neuro-
nal oscillators, which guide template-matching operations at a
hierarchy of temporal scales and presents a model, with a
cascade of oscillators at the core, capable of emulating the
counterintuitive finding of Ghitza and Greenberg (2009) data.

Farbood et al. (2013) examined the effects of timescale
manipulations of music in a manner analogous to the prior
work on compressed speech without gap insertions. They
observed a U-shaped data pattern in a key-finding task as a
function of tempo. The current study builds on and goes
beyond Farbood et al. (2013) in the same way Ghitza and
Greenberg (2009) departed from prior work on compressed
speech––by using the repackaging procedure to examine the
decoding time hypothesis for music. The ideal rates for the
key-finding task in Farbood et al.’s (2013) study encompassed
a large plateau (0.5–6.7 Hz; 150–2000 ms IOI; 30–400 BPM)

Fig. 4 Mean error by duty cycle. Error bars indicate estimated standard
error

Atten Percept Psychophys



where performance was at ceiling. This aligns well with
current estimates of the peak spectrum of music, which is
around 2–3 Hz for a wide range of musical pieces (Ding,
Patel, & Poeppel, under review). If oscillations form the
neuronal basis for this perceptual analysis, they would be in
the delta range (~1–3 Hz). In the present results, however, the
current data implicate a higher modulation rate, and, by ex-
tension, oscillation. The best performance lies in the 5–7 Hz
range, associated with theta (4–8 Hz) activity. There is, as a
consequence, a tension in the old and new results about a
possible oscillatory interpretation. The current data suggest
that parsing or chunking an input stream at roughly 5 Hz holds
for both speech and music. The older data, in contrast, under-
score a potential difference between domains. If oscillatory
neuronal activity plays a central role, the data to date cannot
adjudicate between the alternatives.

The similarities between the findings for music and speech
using this silence-insertion paradigm provide compelling
clues into possible oscillatory mechanisms in the auditory
domain. Nonetheless, much remains to be learned about these
processes. Given these results, as well as evidence suggesting
shared neural resources between syntactic processing of music
and speech (Fedorenko, Patel, Casasanto, Winawer, &
Gibson, 2009; Koelsch, Gunter, Wittfoth, & Sammler, 2005;
Patel, 2003), Western tonal music provides an ideal medium
for the comparative exploration of these mechanisms.
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